6675 measured reflections

 $R_{\rm int} = 0.022$

3200 independent reflections

2716 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Piperazinediium pyridine-2,5-dicarboxylate dihydrate

Shabnam Sheshmani,^a Hossein Aghabozorg^b* and Mohammad Ghadermazi^c

^aDepartment of Chemistry, Islamic Azad University, Shahr-e Rey Branch, Tehran, Iran, ^bDepartment of Chemistry, Teacher Training University, Tehran, Iran, and ^cDepartment of Chemistry, Faculty of Science, Kurdistan University, Sanandaj, Iran Correspondence e-mail: haghabozorg@yahoo.com

Received 24 April 2007; accepted 1 May 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.114; data-to-parameter ratio = 17.7.

In the title compound, $C_4H_{12}N_2^{2+}C_7H_3NO_4^{2-}2H_2O$, intermolecular N—H···O and O—H···O hydrogen bonds and C— H··· π interactions between piperazinediium and the aromatic ring of pyridine-2,5-dicarboxylate are responsible for extending the structure into a three-dimensional supramolecular network.

Related literature

For general background, see: Aghabozorg *et al.* (2006); Moghimi *et al.* (2005); Sheshmani *et al.* (2006); Allen *et al.* (1987); Cremer & Pople (1975).

Experimental

Crystal data

 $C_{4}H_{12}N_{2}^{2+}C_{7}H_{3}NO_{4}^{2-}H_{2}O$ $M_{r} = 289.29$ Triclinic, $P\overline{1}$ a = 7.0673 (6) Å b = 9.9909 (9) Å c = 11.2827 (10) Å $\alpha = 64.181 (2)^{\circ}$ $\beta = 77.479 (2)^{\circ}$

 $V = 670.92 (10) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 100 (2) K $0.24 \times 0.22 \times 0.19 \text{ mm}$

 $\gamma = 69.794 \ (2)^{\circ}$

Data collection

```
Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
T_{\rm min} = 0.971, T_{\rm max} = 0.976
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	181 parameters
$wR(F^2) = 0.114$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
3200 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

i a ogen coma geometri (i i	Hydro	gen-bond	geometry	(Å,	°)
-----------------------------	-------	----------	----------	-----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N2-H2NA\cdotsO3^{i}$	0.87	1.82	2.686 (2)	173
$N2-H2NB\cdotsO1S$	0.87	1.86	2.719(1)	169
N3−H3 <i>NA</i> ···O1 ⁱⁱ	0.87	1.87	2.736 (2)	174
$N3-H3NB\cdots O4^{iii}$	0.87	1.91	2.770 (1)	168
$O1S - H1SA \cdots O2S$	0.82	1.89	2.701 (2)	172
$O1S - H1SB \cdots O2$	0.82	1.94	2.735 (1)	164
$O2S - H2SB \cdots O2^{ii}$	0.82	1.92	2.709 (1)	161
$O2S - H2SA \cdots O3^{iv}$	0.82	1.98	2.730 (2)	152
Symmetry codes: (i)	-x + 3, -y,	-z + 1; (ii)	-x + 1, -y + 1	, -z + 1; (iii)

x - 1, y, z + 1; (iv) x - 1, y + 1, z.

Data collection: *APEXII* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2005); software used to prepare material for publication: *SHELXTL*.

We are grateful to Islamic Azad University, Shahr-e Rey Branch, for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2240).

References

- Aghabozorg, H., Ghadermazi, M. & Sadr Khanlou, E. (2006). Anal. Sci. 22, x253-x254.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2005). APEXII (Version 2.0-1), SAINT (Version 7.23A), SADABS (Version 2004/1) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160–169.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheshmani, S., Ghadermazi, M. & Aghabozorg, H. (2006). Acta Cryst. E62, o3620-o3622.

supplementary materials

Acta Cryst. (2007). E63, o2869 [doi:10.1107/S1600536807021538]

Piperazinediium pyridine-2,5-dicarboxylate dihydrate

S. Sheshmani, H. Aghabozorg and M. Ghadermazi

Comment

Proton transfer is highly important in physics, chemistry and biochemistry. In order to develop new types of proton transfer compounds and hydrogen bonding systems, our research group has already synthesized proton transfer compounds with different proton donors and acceptors (Aghabozorg *et al.*, 2006; Moghimi *et al.*, 2005; Sheshmani *et al.*, 2006). We herein report the crystal structure of the title compound, (I).

The molecule of the title compound, (I), contains one cation, one anion and also two water molecules (Fig. 1). The bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The piperazine ring: A (N2/N3/C8—C11) is not planar, having total puckering amplitude, Q_T of 1.104 (3) Å and chair conformation [φ = -151.67 (4)°, θ = 122.13 (3)°] (Cremer & Pople, 1975).

In the title compound, protons from one carboxylic acid unit are transferred to N atoms of the piperazine. The non-covalent interactions have an important role in self-association of the crystal system. As can be seen from the packing diagram (Fig. 2), the intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) and C—H··· π interactions between piperazinediium and aromatic ring of pyridine-2,5-dicarboxylate (Fig. 3) are responsible for extending the structure into three dimension resulting in a supramolecular network.

Experimental

The title compound was synthesized by a reaction between pyridine-2,5-dicarboxylic acid $(2,5-pydcH_2)$ and piperazine (pipz) in a 1:1 molar ratio. A solution of pipz (430 mg, 5 mmol) in tetrahydrofuran (10 ml) was added to a solution of 2,5-pydcH₂ (835 mg, 5 mmol) in tetrahydrofuran (10 ml). The resulting powder was dissolved in water to give colorless crystals of (I) (yield; 80%).

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH₂), N—H = 0.87 Å (for NH₂) and C—H = 0.95 and 0.99 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,O,N)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Fig. 3. Intermolecular C—H··· π interaction between piperazinediium and aromatic ring of pyridine-2,5-dicarboxylate.

Piperazinediium pyridine-2,5-dicarboxylate dihydrate

Crystal data

$C_4H_{12}N_2^{2+}C_7H_3NO_4^{2-}2H_2O$	<i>Z</i> = 2
$M_r = 289.29$	$F_{000} = 308$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.432 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.0673 (6) Å	Cell parameters from 189 reflections
b = 9.9909 (9) Å	$\theta = 3-28^{\circ}$
c = 11.2827 (10) Å	$\mu=0.12\ mm^{-1}$
$\alpha = 64.181 \ (2)^{\circ}$	T = 100 (2) K
$\beta = 77.479 \ (2)^{\circ}$	Prism, colorless
$\gamma = 69.794 \ (2)^{\circ}$	$0.24\times0.22\times0.19~mm$
$V = 670.92 (10) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector diffractometer	3200 independent reflections
Radiation source: fine-focus sealed tube	2716 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 100(2) K	$\theta_{\text{max}} = 28.0^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -9 \rightarrow 9$
$T_{\min} = 0.971, \ T_{\max} = 0.976$	$k = -13 \rightarrow 13$
6675 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.114$

S = 0.99

3200 reflections

181 parametersPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map Hydrogen site location: mixed

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.72069 (13)	0.42146 (11)	0.10061 (9)	0.0179 (2)
O2	0.68360 (13)	0.35887 (10)	0.31757 (9)	0.0172 (2)
O3	1.71752 (12)	-0.03466 (10)	0.33147 (8)	0.0153 (2)
O4	1.74763 (13)	0.08585 (10)	0.11263 (9)	0.0181 (2)
N1	1.33832 (15)	0.21315 (12)	0.10751 (10)	0.0139 (2)
C1	1.13793 (18)	0.27830 (14)	0.10828 (12)	0.0138 (2)
H1A	1.0800	0.3353	0.0257	0.017*
C2	1.00909 (17)	0.26795 (13)	0.22219 (12)	0.0122 (2)
C3	1.09484 (18)	0.18307 (14)	0.34258 (12)	0.0140 (2)
H3A	1.0123	0.1716	0.4230	0.017*
C4	1.30236 (18)	0.11520 (13)	0.34412 (12)	0.0138 (2)
H4A	1.3640	0.0576	0.4254	0.017*
C5	1.41866 (17)	0.13292 (13)	0.22462 (12)	0.0119 (2)
C6	0.78624 (17)	0.35448 (13)	0.21273 (12)	0.0124 (2)
C7	1.64623 (17)	0.05751 (13)	0.22069 (12)	0.0125 (2)
N2	0.92925 (15)	0.22547 (12)	0.71808 (10)	0.0131 (2)
H2NA	1.0383	0.1590	0.7023	0.016*

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0683P)^{2} + 0.2024P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.41$ e Å⁻³ $\Delta\rho_{min} = -0.31$ e Å⁻³ Extinction correction: none

supplementary materials

H2NB	0.9062	0.3013	0.6413	0.016*
N3	0.62060 (14)	0.34644 (11)	0.88677 (10)	0.0125 (2)
H3NA	0.5147	0.4194	0.8957	0.015*
H3NB	0.6435	0.2692	0.9629	0.015*
C8	0.76465 (18)	0.15153 (14)	0.78825 (12)	0.0151 (2)
H8A	0.8089	0.0667	0.8736	0.018*
H8B	0.7345	0.1062	0.7345	0.018*
C9	0.57630 (18)	0.27015 (14)	0.81250 (12)	0.0153 (2)
H9A	0.5247	0.3495	0.7269	0.018*
H9B	0.4702	0.2186	0.8635	0.018*
C10	0.78693 (17)	0.41821 (13)	0.81741 (11)	0.0132 (2)
H10A	0.8168	0.4641	0.8708	0.016*
H10B	0.7448	0.5023	0.7313	0.016*
C11	0.97483 (17)	0.29762 (14)	0.79543 (12)	0.0143 (2)
H11A	1.0839	0.3469	0.7470	0.017*
H11B	1.0221	0.2168	0.8816	0.017*
O1S	0.82858 (14)	0.44226 (10)	0.47339 (9)	0.0197 (2)
H1SA	0.7424	0.5214	0.4750	0.024*
H1SB	0.7827	0.4028	0.4401	0.024*
O2S	0.56303 (15)	0.71798 (11)	0.45834 (9)	0.0232 (2)
H2SB	0.4951	0.7101	0.5286	0.028*
H2SA	0.5919	0.7966	0.4441	0.028*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0134 (4)	0.0224 (4)	0.0144 (4)	0.0020 (3)	-0.0028 (3)	-0.0087 (4)
O2	0.0124 (4)	0.0223 (5)	0.0148 (4)	-0.0014 (3)	0.0009 (3)	-0.0092 (4)
03	0.0118 (4)	0.0162 (4)	0.0132 (4)	0.0003 (3)	-0.0021 (3)	-0.0045 (3)
O4	0.0127 (4)	0.0191 (4)	0.0142 (4)	-0.0003 (3)	0.0009 (3)	-0.0032 (3)
N1	0.0117 (5)	0.0146 (5)	0.0127 (5)	-0.0017 (4)	-0.0007 (4)	-0.0047 (4)
C1	0.0128 (5)	0.0148 (5)	0.0125 (6)	-0.0013 (4)	-0.0025 (4)	-0.0055 (4)
C2	0.0106 (5)	0.0118 (5)	0.0146 (6)	-0.0017 (4)	-0.0007 (4)	-0.0069 (4)
C3	0.0142 (6)	0.0150 (5)	0.0117 (5)	-0.0028 (4)	0.0012 (4)	-0.0065 (4)
C4	0.0141 (6)	0.0135 (5)	0.0122 (5)	-0.0004 (4)	-0.0033 (4)	-0.0053 (4)
C5	0.0110 (5)	0.0107 (5)	0.0140 (5)	-0.0017 (4)	-0.0009 (4)	-0.0059 (4)
C6	0.0114 (5)	0.0114 (5)	0.0149 (6)	-0.0022 (4)	-0.0009 (4)	-0.0065 (4)
C7	0.0114 (5)	0.0105 (5)	0.0153 (6)	-0.0017 (4)	-0.0011 (4)	-0.0058 (4)
N2	0.0118 (5)	0.0139 (5)	0.0111 (5)	-0.0003 (4)	-0.0004 (4)	-0.0055 (4)
N3	0.0109 (5)	0.0139 (5)	0.0109 (5)	-0.0014 (4)	-0.0004 (4)	-0.0052 (4)
C8	0.0146 (5)	0.0141 (5)	0.0177 (6)	-0.0030 (4)	-0.0008 (4)	-0.0083 (5)
C9	0.0113 (5)	0.0189 (6)	0.0180 (6)	-0.0034 (4)	-0.0014 (4)	-0.0098 (5)
C10	0.0144 (5)	0.0128 (5)	0.0119 (5)	-0.0038 (4)	-0.0001 (4)	-0.0048 (4)
C11	0.0115 (5)	0.0181 (6)	0.0142 (6)	-0.0044 (4)	0.0004 (4)	-0.0075 (5)
O1S	0.0254 (5)	0.0179 (4)	0.0166 (5)	-0.0043 (4)	-0.0047 (4)	-0.0075 (4)
O2S	0.0313 (5)	0.0206 (5)	0.0188 (5)	-0.0112 (4)	0.0070 (4)	-0.0098 (4)

Geometric parameters (Å, °)

O1—C6	1.2511 (15)	N3—C10	1.4843 (15)
O2—C6	1.2563 (15)	N3—C9	1.4887 (15)
O3—C7	1.2705 (15)	N3—H3NA	0.8698
O4—C7	1.2413 (15)	N3—H3NB	0.8695
N1—C1	1.3387 (15)	C8—C9	1.5120 (16)
N1—C5	1.3413 (15)	C8—H8A	0.9900
C1—C2	1.3905 (16)	C8—H8B	0.9900
C1—H1A	0.9500	С9—Н9А	0.9900
C2—C3	1.3892 (16)	С9—Н9В	0.9900
C2—C6	1.5137 (15)	C10-C11	1.5128 (16)
C3—C4	1.3874 (16)	C10—H10A	0.9900
С3—НЗА	0.9500	C10—H10B	0.9900
C4—C5	1.3918 (16)	C11—H11A	0.9900
C4—H4A	0.9500	C11—H11B	0.9900
C5—C7	1.5223 (16)	O1S—H1SA	0.8197
N2—C8	1.4868 (16)	O1S—H1SB	0.8197
N2—C11	1.4885 (15)	O2S—H2SB	0.8199
N2—H2NA	0.8699	O2S—H2SA	0.8195
N2—H2NB	0.8695		
C1—N1—C5	117.45 (10)	C9—N3—H3NA	110.7
N1—C1—C2	124.22 (11)	C10—N3—H3NB	117.0
N1—C1—H1A	117.9	C9—N3—H3NB	100.3
C2—C1—H1A	117.9	H3NA—N3—H3NB	109.6
C3—C2—C1	117.48 (11)	N2—C8—C9	110.20 (10)
C3—C2—C6	122.09 (10)	N2—C8—H8A	109.6
C1—C2—C6	120.33 (10)	С9—С8—Н8А	109.6
C4—C3—C2	119.28 (11)	N2—C8—H8B	109.6
С4—С3—НЗА	120.4	С9—С8—Н8В	109.6
С2—С3—НЗА	120.4	H8A—C8—H8B	108.1
C3—C4—C5	118.90 (11)	N3—C9—C8	110.65 (9)
C3—C4—H4A	120.6	N3—C9—H9A	109.5
С5—С4—Н4А	120.6	С8—С9—Н9А	109.5
N1C5C4	122.66 (11)	N3—C9—H9B	109.5
N1—C5—C7	116.24 (10)	С8—С9—Н9В	109.5
C4—C5—C7	121.08 (10)	Н9А—С9—Н9В	108.1
O1—C6—O2	125.15 (11)	N3—C10—C11	110.20 (9)
O1—C6—C2	117.55 (10)	N3-C10-H10A	109.6
O2—C6—C2	117.22 (10)	C11—C10—H10A	109.6
O4—C7—O3	124.71 (11)	N3-C10-H10B	109.6
O4—C7—C5	119.37 (10)	C11—C10—H10B	109.6
O3—C7—C5	115.90 (10)	H10A—C10—H10B	108.1
C8—N2—C11	110.78 (9)	N2-C11-C10	109.79 (9)
C8—N2—H2NA	111.4	N2—C11—H11A	109.7
C11—N2—H2NA	110.0	C10-C11-H11A	109.7
C8—N2—H2NB	117.1	N2—C11—H11B	109.7
C11—N2—H2NB	103.1	C10-C11-H11B	109.7

supplementary materials

H2NA—N2—H2NB	103.9	H11A—C11—H11B	108.2
C10—N3—C9	111.45 (9)	H1SA—O1S—H1SB	108.3
C10—N3—H3NA	107.6	H2SB—O2S—H2SA	98.1
C5—N1—C1—C2	0.01 (18)	C3—C2—C6—O2	6.44 (17)
N1—C1—C2—C3	-0.63 (18)	C1—C2—C6—O2	-169.99 (11)
N1—C1—C2—C6	175.95 (11)	N1—C5—C7—O4	7.27 (16)
C1—C2—C3—C4	0.93 (17)	C4—C5—C7—O4	-174.20 (11)
C6—C2—C3—C4	-175.59 (11)	N1—C5—C7—O3	-171.12 (10)
C2-C3-C4-C5	-0.64 (18)	C4—C5—C7—O3	7.41 (16)
C1-N1-C5-C4	0.32 (17)	C11—N2—C8—C9	58.08 (12)
C1—N1—C5—C7	178.83 (10)	C10—N3—C9—C8	56.11 (12)
C3—C4—C5—N1	0.00 (18)	N2—C8—C9—N3	-56.11 (13)
C3—C4—C5—C7	-178.44 (10)	C9—N3—C10—C11	-56.94 (12)
C3—C2—C6—O1	-176.57 (11)	C8—N2—C11—C10	-58.93 (12)
C1—C2—C6—O1	7.01 (17)	N3—C10—C11—N2	57.86 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N2—H2NA···O3 ⁱ	0.87	1.82	2.686 (2)	173
N2—H2NB···O1S	0.87	1.86	2.719 (1)	169
N3—H3NA…O1 ⁱⁱ	0.87	1.87	2.736 (2)	174
N3—H3NB···O4 ⁱⁱⁱ	0.87	1.91	2.770 (1)	168
O1S—H1SA···O2S	0.82	1.89	2.701 (2)	172
O1S—H1SB···O2	0.82	1.94	2.735 (1)	164
O2S—H2SB···O2 ⁱⁱ	0.82	1.92	2.709 (1)	161
O2S—H2SA···O3 ^{iv}	0.82	1.98	2.730 (2)	152

Symmetry codes: (i) -*x*+3, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1, *y*, *z*+1; (iv) *x*-1, *y*+1, *z*.

